
 1

プログラミング基礎演習 / 説明資料 / G2 / ball / 訂正

訂正 1）ボールの速度と座標をランダムにする

前回）
function makeBalls() {

・・・略・・・

 // ボール[i]の座標をランダムに設定

 balls[i].posX = Math.random() * (maxX - balls[i].offsetWidth) + balls[i].offsetWidth

/ 2;

 balls[i].posY = Math.random() * (maxY - balls[i].offsetHeight) + balls[i].offsetHeight

/ 2;

 // ボール[i]の速度をランダムに設定

 balls[i].vX = Math.random() * 10 - 5;

 balls[i].vY = Math.random() * 10 - 5;

}

↓

訂正）
const ballSpeed = 5; // ボールの速度

function makeBalls() {

・・・略・・・

 // ボール[i]の速度をランダムに設定

 let s = ballSpeed;

 balls[i].vX = Math.random() * s * 2 - s;

 balls[i].vY = Math.random() * s * 2 - s;

 // ボール[i]の座標をランダムに設定

 let r = balls[i].offsetWidth / 2;

 balls[i].posX = Math.random() * (maxX - r * 2 - s * 2) + r + s;

 balls[i].posY = Math.random() * (maxY - r * 2 - s * 2) + r + s;

}

 2

解説：

（1）ボールの速度を変数設定する

const ballSpeed = 5; // ボールの速度

（2）ボールの速度をランダムにする

 let s = ballSpeed;

 balls[i].vX = Math.random() * s * 2 - s;

 balls[i].vY = Math.random() * s * 2 - s;

計算の仕組み

Math.random() 0〜1 未満のランダムな⼩数を返す
例: 0.0, 0.5, 0.9999...

* s * 2 0 以上 s 未満の範囲に値が広がる。
さらに * 2 を⾏うことで、0 以上 2s 未満の範囲に拡⼤される。
これは、最終的に -s 〜 +s のランダム値を作るための準備である。

- s 最後に s を引くことで、 値の範囲が 左に s だけシフトされる

（3）ボールの座標をランダムにする

 let r = balls[i].offsetWidth / 2;

 balls[i].posX = Math.random() * (maxX - r * 2 - s * 2) + r + s;

 balls[i].posY = Math.random() * (maxY - r * 2 - s * 2) + r + s;

計算の仕組み

コード 意味
Math.random() 0 以上 1 未満のランダムな⼩数を返す

例 0.0, 0.5, 0.9999...
* (maxX - r * 2 - s * 2) 画⾯の横幅（maxX）から

ボールの直径（r * 2）とボールの最⼤速度分の余⽩（s * 2）
を引いた「配置可能な範囲」を指定する

+ r + s 左端（または上端）からの 開始位置を指定する
• + r → ボールの中⼼が画⾯端に来ないようにするための余⽩
• + s → 最初の移動で画⾯外に出ないようにするための余⽩

 3

訂正 2）画⾯の左右・上下の端で跳ね返る

前回）

 // 画面の左右の端で跳ね返る

 if (balls[i].posX > maxX - balls[i].offsetWidth / 2) {

 balls[i].vX = -balls[i].vX;

 }

 if (balls[i].posX < balls[i].offsetWidth / 2) {

 balls[i].vX = -balls[i].vX;

 }

 // 画面の上下の端で跳ね返る

 if (balls[i].posY > maxY - balls[i].offsetHeight / 2) {

 balls[i].vY = -balls[i].vY;

 }

 if (balls[i].posY < balls[i].offsetHeight / 2) {

 balls[i].vY = -balls[i].vY;

 }

↓

訂正）⻩⾊箇所追加
 // 画面の左右の端で跳ね返る

 if (balls[i].posX > maxX - balls[i].offsetWidth / 2) {

 balls[i].posX = maxX - balls[i].offsetWidth / 2;

 balls[i].vX = -balls[i].vX;

 }

 if (balls[i].posX < balls[i].offsetWidth / 2) {

 balls[i].posX = balls[i].offsetWidth / 2;

 balls[i].vX = -balls[i].vX;

 }

 // 画面の上下の端で跳ね返る

 if (balls[i].posY > maxY - balls[i].offsetHeight / 2) {

 balls[i].posY = maxY - balls[i].offsetHeight / 2;

 balls[i].vY = -balls[i].vY;

 }

 if (balls[i].posY < balls[i].offsetHeight / 2) {

 balls[i].posY = balls[i].offsetHeight / 2;

 balls[i].vY = -balls[i].vY;

 }

