
 1

プログラミング基礎演習 / 説明資料 / G2 / screen

⽬標：
ゲームの画⾯（スクリーン）として、「スタート画⾯」「プレイ画⾯」「ゲームオーバー画⾯」「クリ
ア画⾯」の 4 つの画⾯を作成します。

準備：
g2/

└─ 4_screen/

└─ step1/

 ├─ css/ ・・・ CSSファイルを格納

 ├─ js/ ・・・ JavaScriptファイルを格納

 └─ img/ ・・・ 画像ファイルを格納

開発⼿順：

Step1： HTML で各画⾯の⽂章を作成する

Step2： CSS で画⾯を装飾する 1（共通部）

Step3： CSS で画⾯を装飾する 2（⾒出し、制限時間、ライフ）

Step4： JS で画⾯切替機能を実装する

Step5： ブラッシュアップ

 2

G2-4-Step1：HTML で各画⾯の⽂章を作成する
スタート画⾯（#start）、プレイ画⾯（#play）、ゲームオーバー画⾯（#end）、クリア画⾯（#clear）
を 1 つの HTML に記述します。各画⾯のメッセージは、⾃由に書いて構いません。以下はサンプルで
す。ただし、HTML タグと id と class は、CSS の装飾指定や DOM 操作を⾏うため、必ず、以下の
通り指定してください。

HTML / <body> 変更

・・・略・・・

<body>

 <div id="start" class="screen active">

 <h1>Marimo Game</h1>

 <p>マリモを操作してボールを避けよう！</p>

 <p class="next">スペースキーを押してゲームを開始してください</p>

 </div>

 <div id="play" class="screen active">

 <div id="time">Time: 30</div>

 <div id="life">Life: 3</div>

 <div id="marimo"></div>

 <div id="ball"></div>

 </div>

 <div id="end" class="screen active">

 <h1>Game Over</h1>

 <p class="next">スペースキーを押すとゲームの開始画面に戻ります</p>

 </div>

 <div id="clear" class="screen active">

 <h1>Clear!</h1>

 <p>おめでとうございます！ボールを避け切りました！</p>

 <p class="next">スペースキーを押すとゲームの開始画面に戻ります</p>

 </div>

</body>

・・・略・・・

結果：
4 つの画⾯が縦並びに表⽰され、各画⾯内に⽂章が表⽰されたら成功です。

解説：
1）class="screen active" について
以前に演習した「プレゼントボックス」と同様に、class を 2 つ指定しています。
screen はすべての画⾯に同じ CSS を適⽤するため、active は有効にしたい画⾯のみ付与する予定です。

 3

現時点では、CSS で装飾を⾏うため、すべての画⾯に active を付与して開いた状態にしています。
最終的には、JS から表⽰したい画⾯のみに active を付与します。

G2-4-Step2：CSS で画⾯を装飾する 1（共通部）
画⾯の基礎を作ります。4 つすべての画⾯が同じ指定になるため、「.screen」に対して記述します。
以下のように CSS（全⽂）を記述してください。

CSS / 全文 / 変更

body {

 background-color: #fff;

}

.screen {

 position: relative;

 margin: 50px auto;

 width: 80vw;

 height: 80vh;

 background-color: #fff;

 border-radius: 20px;

 background: url('../img/bg.png') center/cover no-repeat;

 display: none;

}

.screen.active {

 display: flex;

 flex-direction: column;

 justify-content: center;

 align-items: center;

}

結果：
4 つの画⾯に背景が表⽰され、各画⾯に⽂章が上下中央寄せで配置されたら成功です。

解説：

セレクタ 内容
background: background プロパティをまとめて書いた ショートハンド（省略形） です。

 4

background-image: url('../img/bg.png');
=> 画⾯に表⽰したい画像ファイルを指定
 '../img/bg.png' は「⼀つ上のフォルダにある img/bg.png」という意味

background-position: center;
=> 背景画像を横・縦の両⽅で中央に配置する

background-size: cover;
=> 要素の⼤きさに合わせて「はみ出してもいいから画⾯を隙間なく埋める」

background-repeat: no-repeat;
=> 画像をタイル状に並べず、1 枚だけ表⽰する

.screen 各画⾯の共通になる背景などを指定しています。
display:none; を指定して⾮表⽰にしています。これは、実際のゲームを動かす
際に、常に 4 つの画⾯を出すのではなく、1 つの画⾯だけを表⽰するためです。

.screen.active .screen かつ.active の場合に適⽤されます。
display:flex;を指定することで表⽰状態にしています。
現時点では、すべて付与することで全画⾯を確認できるようにしています。

G2-4-Step3：CSS で画⾯を装飾する 2（タイトル、制限時間、ライフ）
タイトル（h1）、制限時間（#time）、ライフ（#life）の装飾を⾏います。
以下の通り、CSS の最下部に追加してください。

CSS / 最下部 / 追加

h1 {

 font-family: 'Comic Sans MS', sans-serif;

 padding: 20px;

 font-size: 3em;

 font-weight: bold;

 color: white;

 -webkit-text-stroke: 2px black;

}

#time {

 position: absolute;

 top: 20px;

 left: 20px;

 font-family: 'Comic Sans MS', sans-serif;

 font-size: 2em;

 5

 font-weight: bold;

 color: white;

 -webkit-text-stroke: 2px black;

 z-index: 100;

}

#life {

 position: absolute;

 top: 20px;

 right: 20px;

 font-family: 'Comic Sans MS', sans-serif;

 font-size: 2em;

 font-weight: bold;

 color: white;

 -webkit-text-stroke: 2px black;

 z-index: 100;

}

結果：
プレイ画⾯の左上に「Time: 30」、右上の「Life: 3」と表⽰されたら成功です。

解説：

プロパティ 解説
font-family: フォント（⽂字の⾒た⽬）を選ぶプロパティ

最初の 'Comic Sans MS' が指定フォント、そのフォントが使えないとき
の 予備として sans-serif を使います。いくつでも指定ができます。
左から順にフォントが指定されます。

-webkit-text-stroke: ⽂字の外側に線（ストローク）をつけるプロパティ
線の太さ 2pxで⾊は⿊に指定しています。
-webkit-*** は、標準化されていないが、利⽤されています。

z-index: どの要素を前⾯に表⽰するかを決めるプロパティ
数字が⼤きいほど前⾯（⼀番上）に表⽰されます。
未指定の場合は、auto となり、HTML の書かれた順で重なりが決まりま
す。今回、100にしていますが、50でも 999でも構いません。他の要素
に隠れないよう確実に指定することが⽬的です。

 6

G2-4-Step4：JS で画⾯切替機能の実装する

JS で、画⾯を切替える機能を実装します。以下のコードを app.js に記述してください。

JS / 新規

// 現在の画面を格納する変数

let mode; // start, play, end, clear

// 各画面の DOM取得

const startScreen = document.querySelector("#start");

const playScreen = document.querySelector("#play");

const endScreen = document.querySelector("#end");

const clearScreen = document.querySelector("#clear");

// 画面切替

function showScreen(screenName) {

 // すべての画面から activeクラスを除去

 startScreen.classList.remove("active");

 playScreen.classList.remove("active");

 endScreen.classList.remove("active");

 clearScreen.classList.remove("active");

 // 指定された画面だけ activeクラスを追加

 if (screenName === "start") {

 startScreen.classList.add("active");

 } else if (screenName === "play") {

 playScreen.classList.add("active");

 } else if (screenName === "end") {

 endScreen.classList.add("active");

 } else if (screenName === "clear") {

 clearScreen.classList.add("active");

 }

 // モードを更新

 mode = screenName;

}

 7

// 初期画面を表示

//showScreen("start");

showScreen("play");

//showScreen("end");

//showScreen("clear");

結果：
showScreen("***"); の *** を、start / play / end / clear を指定して、
それぞれの画⾯が表⽰されたら成功です。

解説：

コード 解説
.classList.remove("active"); 各画⾯要素に class=”active”がある場合は、削除しています。

これにより⼀度すべての画⾯を⾮表⽰状態にします。
.classList.add("active"); 指定された画⾯要素のみに class=”active”を付与します。

mode = screenName; 現在表⽰中の画⾯が何かわかるように、mode変数にセットして
います。現時点では利⽤しませんが、「ゲームオーバー中はスペ
ースキーを押したら・・・」などの判定に使う予定です。

G2-4-Step5：ブラッシュアップ

・「スペースキーを押す」メッセージを⽬⽴たせるようにする
・フォントを変更する
・背景画像を⾃作して画⾯イメージを変える
・Time や Life の表⽰位置、サイズなどを変更する
etc…

 8

例）「スペースキーを押す」メッセージを⽬⽴たせるようにする

CSS / 最下部 / 追加

p.next {

 color: #e74c3c;

 font-weight: bold;

 animation: blink 1.5s ease-in-out infinite;

}

@keyframes blink {

 0%, 100% {

 opacity: 1;

 }

 50% {

 opacity: 0.4;

 }

}

 9

G2-4-Step6：画⾯サイズを取得する
各画⾯のサイズを取得するコードを記述します。app.js に以下のコードを記述してください。

1）変数に画⾯サイズの幅と⾼さの変数を宣⾔します（⻩⾊箇所）

JS / 変数 / 追加

// 現在の画面を格納する変数

let mode; // start, play, end, clear

let maxX; // 画面サイズ（幅）

let maxY; // 画面サイズ（高さ）

2）各画⾯を active した後に画⾯サイズを取得するコードを記述します（⻩⾊箇所）

JS / showScreen() / 追加

function showScreen(screenName) {

・・・略・・・

 // 指定された画面だけ activeクラスを追加

 if (screenName === "start") {

 startScreen.classList.add("active");

 maxX = startScreen.clientWidth;

 maxY = startScreen.clientHeight;

 } else if (screenName === "play") {

 playScreen.classList.add("active");

 maxX = playScreen.clientWidth;

 maxY = playScreen.clientHeight;

 } else if (screenName === "end") {

 endScreen.classList.add("active");

 maxX = endScreen.clientWidth;

 maxY = endScreen.clientHeight;

 } else if (screenName === "clear") {

 clearScreen.classList.add("active");

 maxX = clearScreen.clientWidth;

 maxY = clearScreen.clientHeight;

 }

 // 画面サイズ出力（デバッグ）

 console.log(maxX, maxY);

・・・略・・・

結果：
showScreen("***"); の *** には、start / play / end / clear のいずれかを指定してください。
DevTools のコンソールに「幅, ⾼さ」として画⾯サイズが表⽰されれば成功です。
※ 各画⾯（start / play / end / clear）のサイズはすべて同じです。

